ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data

نویسندگان

  • Age K. Smilde
  • Jeroen J. Jansen
  • Huub C. J. Hoefsloot
  • Robert-Jan A. N. Lamers
  • Jan van der Greef
  • Marieke E. Timmerman
چکیده

MOTIVATION Datasets resulting from metabolomics or metabolic profiling experiments are becoming increasingly complex. Such datasets may contain underlying factors, such as time (time-resolved or longitudinal measurements), doses or combinations thereof. Currently used biostatistics methods do not take the structure of such complex datasets into account. However, incorporating this structure into the data analysis is important for understanding the biological information in these datasets. RESULTS We describe ASCA, a new method that can deal with complex multivariate datasets containing an underlying experimental design, such as metabolomics datasets. It is a direct generalization of analysis of variance (ANOVA) for univariate data to the multivariate case. The method allows for easy interpretation of the variation induced by the different factors of the design. The method is illustrated with a dataset from a metabolomics experiment with time and dose factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

lmdme: Linear Model on Designed Multivariate Experiments in R

The lmdme package implements analysis of variance (ANOVA) decomposition through linear models on designed multivariate experiments in R (R Development Core Team, 2012), allowing ANOVA-principal component analysis (APCA) and ANOVA-simultaneous component analysis (ASCA). It also extends both methods with the application of partial least squares (PLS) through the specification of a desired output ...

متن کامل

MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets

SUMMARY Time-series and multifactor studies have become increasingly common in metabolomic studies. Common tasks for analyzing data from these relatively complex experiments include identification of major variations associated with each experimental factor, comparison of temporal profiles across different biological conditions, as well as detection and validation of the presence of interaction...

متن کامل

Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study

Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following uncontrolled benzoic acid ingestion. We performed a metabolomics study which used commercial benzo...

متن کامل

Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA

MOTIVATION Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels...

متن کامل

Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis

Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25-35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 21 13  شماره 

صفحات  -

تاریخ انتشار 2005